معلومات عن قانون ديكارت

المخرج

كاتب جيد جدا
%D8%AA%D9%86%D8%B2%D9%8A%D9%84-3.jpg

محتويات
  • جذور إيجابية
  • جذور سلبية
  • مثال جذور حقيقية
  • جذور غير حقيقية
  • حالة خاصة
  • التعميمات
  • من هو رينيه ديكارت
تعتبر قاعدة علامات ديكارت ، التي وصفها رينيه ديكارت لأول مرة في عمله La Géométrie ، تقنية للحصول على معلومات حول عدد الجذور الحقيقية الإيجابية للعديد من الحدود ، ويؤكد أن عدد الجذور الموجبة هو على الأكثر عدد من التغييرات في علامة تسلسل معاملات كثيرات الحدود (حذف معاملات الصفر) ، وأن الفرق بين هذين الرقمين هو دائم.
وهذا يعني على وجه الخصوص ، أنه إذا كان عدد التغييرات في العلامة هو صفر أو واحد ، فهناك بالضبط جذر إيجابي واحد أو واحد على التوالي.
من خلال تحول هوموجرافيك للمتغير ، يجوز للمرء استخدام قاعدة علامات ديكارت للحصول على معلومات مماثلة عن عدد الجذور في أي فاصل زمني ، هذه هي الفكرة الأساسية لنظرية بودان ، ونظرية Budan-Fourier.
من خلال تكرار تقسيم الفاصل الزمني إلى فواصل زمنية ، يحصل المرء في نهاية المطاف على قائمة بفواصل الفواصل التي تحتوي معًا على كل الجذور الحقيقية للعديد من الحدود ، وتحتوي على كل جذر حقيقي تمامًا.
تعتبر قاعدة ديكارت للعلامات والتحولات التماثلية للمتغير ، في الوقت الحاضر ، أساسًا لأسرع الخوارزميات لحساب الكمبيوتر للجذور الحقيقية متعددة الحدود.
استخدم ديكارت التحويل x → –x لاستخدام حكمه للحصول على معلومات عن عدد الجذور السلبية.
جذور إيجابية
تنص القاعدة على أنه إذا تم ترتيب شروط متعدد الحدود أحادية المتغير مع المعاملات الحقيقية بواسطة تنازلي الأس ، فإن عدد الجذور الموجبة للعدد متعدد الحدود يساوي عدد فروق الإشارة بين معاملات غير صفرية متتالية ، أو يكون أقل من ذلك برقم زوجي ، يتم حساب جذور متعددة من نفس القيمة بشكل منفصل.
جذور سلبية
كنتيجة طبيعية للقاعدة ، فإن عدد الجذور السالبة هو عدد التغييرات في العلامة بعد ضرب معاملات مصطلحات القوة الفردية بمقدار −1 ، أو أقل منها برقم زوجي ، هذا الإجراء يعادل استبدال نفي المتغير للمتغير نفسه .
على سبيل المثال ، للعثور على عدد الجذور السلبية لـ F(x)=ax^3+bx^2+cx+d ، ونحن نسأل بالتساوي كم من الجذور الإيجابية هناك لـ -x في :
x)+d=-ax^3+bx^2-cx+d=g(x).-f (-x)=a(-x)^3+b(-x)^2+c(
باستخدام قاعدة علامات ديكارت على g(x) يعطي عدد الجذور الموجبة xi في g، و منذg(x) = f (-x) تعطي عدد الجذور الموجبة (-xi) لـ f، وهو نفس عدد الجذور السالبة xi لـf .
مثال جذور حقيقية
كثير الحدود
f(x)=+x^{3}+x^{2}-x-1
يحتوي على تغيير علامة واحدة بين المصطلحين الثاني والثالث (تسلسل أزواج من علامات المتعاقبة هو + → + ، + → – ، – → -).
لذلك لدى هذا المثال بالضبط جذر واحد إيجابي ، لاحظ أن علامة المعامل الرئيسي يجب أخذها في الاعتبار ، للعثور على عدد الجذور السالبة ، قم بتغيير علامات معاملات المصطلحات ذات الأسس الفردية ، أي تطبيق قاعدة علامات ديكارت على كثير الحدود f(-x)، للحصول على متعدد الحدود الثاني
f(-x)=-x^{3}+x^{2}+x-1
يحتوي كثير الحدود على تغييرين في العلامة (تسلسل أزواج من العلامات المتعاقبة هو – → + ، + + + + ، + → -) ، وهذا يعني أن هذا الحد متعدد الحدود الثاني له جذور موجبة أو صفر ؛ وبالتالي متعدد الحدود الأصلي له جذور سلبية أو اثنين.
في الواقع ، فإن عامل كثير الحدود الأولى هو
وبالتالي فإن الجذور هي −1 (مرتين) و +1 (مرة واحدة).
إن عامل كثير الحدود الثاني هو f(x)=(x+1)^{2}(x-1) ، لذلك فإن الجذور هي (twice) and +1 (once) 1- .
كم أن عامل كثير الحدود الثاني هو (f(-x)=-(x-1)^{2}(x+1 .
حتى هنا فإن الجذور هي (twice) and −1 (once)+ 1 ، ونفي جذور متعدد الحدود الأصلي .
جذور غير حقيقية
أي درجة متعددة الحدود لها جذور n بالضبط في الطائرة المعقدة ، إذا تم حسابها وفقًا للتعددية.
إذا كان (f (x متعدد الحدود وليس له الجذر عند 0 (والذي يمكن تحديده عن طريق التفتيش) فإن الحد الأدنى لعدد الجذور غير الحقيقية يساوي n-(p+q) ، حيث تشير p إلى الحد الأقصى لعدد الجذور الموجبة ، تشير q إلى الحد الأقصى لعدد الجذور السلبية (يمكن العثور على كلاهما باستخدام قاعدة علامات ديكارت) ، وتشير n إلى درجة المعادلة.
مثال: معاملات صفر ، جذور غير حقيقية .
كثير الحدود .
f(x) = x^3-1
لديه تغيير علامة واحدة ، وبالتالي فإن الحد الأقصى لعدد الجذور الحقيقية الإيجابية هي -1 من f(-x) = -x^3-1 .
يمكننا أن نقول أن كثير الحدود ليس له جذور سلبية حقيقية ، وبالتالي فإن الحد الأدنى لعدد الجذور غير الحقيقية 3 – (1+0) = 2 .
نظرًا لأنه يجب أن تحدث جذور غير حقيقية ذات كثير الحدود مع معاملات حقيقية في أزواج متزامنة ، يمكننا أن نرى أن x3 – 1 له جذران غير حقيقيين وجذر واحد حقيقي (وإيجابي).
حالة خاصة
يحدث طرح مضاعفات 2 فقط من العدد الأقصى للجذور الموجبة ، لأن كثير الحدود قد يكون له جذور غير واقعية ، والتي تأتي دائمًا في أزواج لأن القاعدة تنطبق على كثيرات الحدود التي تكون معاملاتها حقيقية.
وبالتالي إذا كان من المعروف أن كثير الحدود له جذور حقيقية ، فإن هذه القاعدة تسمح للمرء أن يجد العدد الدقيق للجذور الإيجابية والسلبية ، نظرًا لأنه من السهل تحديد تعدد الصفر كجذر ، يمكن تحديد علامة جميع الجذور في هذه الحالة .
التعميمات
إذا كان متعدد الحدود الحقيقي P له جذور موجبة حقيقية محسوبة بتعدد ، فلكل من a> 0 هناك على الأقل k تغييرات في علامة في تسلسل معاملات سلسلة تايلور للدالة (eaxP(x لحد كبير بما فيه الكفاية ، هناك بالضبط مثل هذه التغييرات من علامة .
في سبعينيات القرن العشرين طور أسكولد جورجيفيتش خوفانسكي نظرية عدد قليل من الشخصيات التي تعمم حكم ديكارت .
يمكن اعتبار قاعدة العلامات على أنها تشير إلى أن عدد الجذور الحقيقية لمتعدد الحدود يعتمد على تعقيد كثير الحدود ، وأن هذا التعقيد يتناسب مع عدد المونوميات الموجودة فيه ، وليس على درجتها .[1]
أظهر خوفانسكي أن هذا ينطبق ليس فقط على كثيرات الحدود ولكن أيضًا على التوليفات الجبرية للعديد من الوظائف التجاوزي ، ما يسمى Pfaffian functions .
من هو رينيه ديكارت
كان رينيه ديكارت (1596-1650) عالم رياضيات مبدع من الدرجة الأولى ، وهو مفكر علمي مهم ، وعالم الميتافيزيقا الأصلية . خلال حياته ، كان عالم رياضيات أولاً ، و عالم طبيعة أو “فيلسوف طبيعة” في المرتبة الثانية ، وثالثًا في الميتافيزيقيا .
طور ديكارت التقنيات التي جعلت الهندسة الجبرية (أو “التحليلية”) ممكنة ، أما في الفلسفة الطبيعية ، يمكن أن يُنسب إليه العديد من الإنجازات المحددة: المشارك لقانون انكسار الجيب ، ومطور لحساب تجريبي مهم لقوس قزح ، ومقترح حساب طبيعي لتكوين الأرض والكواكب
 

مواضيع مماثلة

أعلى